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hi addition to a variety of numerical  inethods, modern lami-  
nar boundary layer theory uses asymptotic tnethods as an efficient 
methods as an efficient analytical  tool. Asymptotic integrationof the 
equations makes it possible to obtain closed-form expressions 
for quantities proportional to friction ~"(0) and heat  flux g'(0). 
Preliminary determination of the missing values for the zero 
derivatives makes it possible to reduce boundary value problems in 
boundary layer theory to the Cauchy problem, thus greatly simplify- 
ing the numerical  solution. 

The general principles of asymptotic integration of boundary lay- 
er equations are outlined in Meksyin's monograph [1], which contains 
a detailed analysis of  incompressible boundary layer problems. By 
formal integration of the boundary layer equations--as linear inhomo- 
geneons equations in the second derivative of the stream function, the 
problem of determining friction is reduced to the calculat ion of a La- 
p lace- type  integral by the method of steepest descent. This yields an 
equation for the unknown with a r ight-hand side in the form of a di- 
vergent series, summable  by Euler's formula. 

In [2, 8] G A. Tirskii used asymptotic methods to derive s imi la -  
rity relations between the enthalpy and concentration fields, assum- 
ing friction to be known from a numerical  solution of the problem. 

The question of simultaneously determining friction and heat  
flux in compressible boundary layer problems was formulated in [4], 
where, for a definite type of  equations, a method of calculating 
these quantities from a system of finite equations was considered. 

The present paper is concerned with the system of equations for 
a compressible laminar  boundary layer in the neighborhood of a 
stagnation line. The physical properties of the gas are given functions 
of temperature.  

A system of equations for friction ~0"(0) and heat  flux g'(0) is 
obtained, the accuracy of these quantities being independent of the 
value of the blowing-BLC parameter .  Since the numberical  solution 
of the initial system of equations is known for a l imited number of 
parameters  of  the problem, the analytical  formulas derived make it 
possible to study the effect  of each parameter  individually. The ac-  
curacy with which the unknowns are determined can be established 
by evaluating subsequent terms of  the asymptotic expansions, 

A comparison with a numerical  solution for some parameters of 
the problem is given in the last part of the paper. 

To the flow of a compressible gas past a plane stagnation point 
there corresponds the the following boundary value problem [2]: 

(1~") '  + e i~"  = ~':' - -  go - -  (1 - -  go) g 
( Ig ' ) '  + aepg' = 0 

,~ (0) = e,, ~ '  (0) = O, g (0) = O, 

g h - -  t!o ~ (1) 
b o o -  hoj (2) 

~ ' ( ~ )  + g ( ~ )  - 1 , ( 3 )  

where the function ~ is proportional to the normal velocity compo-  
nent in the boundary layer; g is dimensionless enthalpy, the sub- 
script 0 corresponding to the conditions at the body, the function l 
is proportional to the compressibility factor PP/P0I~a in which expres- 
sion p is density and ~ is the viscosity of the gas, o stands for the 
Prandtl number.  

In [2] it was shown that the function l can be expressed as follows; 

(1 -F l i t )  '/' | 
l (g) - -  1 -1- Ill.,.g, It go - -  l ,  

(4) 
l ( ~,,, s f_._e_~ ] 

12 = 1 -?  ~s'jn go-J \go  = 7~ ' ~S'j~ + - T o o % m ] ,  

where Sj is the Sutherland constant. As in [4], we introduce the func- 

tion 

t ( go b (1 tgu) n -t oe~ ~'+ )+ g '~'~). (r,) 

Then equation [1] can be written in a form analogous to the i31asius 
equation: 

q," 4- tlg)" = 0. ((J) 

Double integratmn of this equation with consideration of the 
boundary conditions yields the following expression for friction: 

q~" ((1) = T = m-i (oo), 
rl 

o o 

Considering only the first two terms of the expansion of function 
R in a Taylor series in the neighborhood of ~1 = 0, we obtain the prin- 
cipal term of  the asymptotic expansion of the quantity .~(~o). As shown 
in [4], for equations of type (1) this term gives a good approximation 
of the exact  value of w(~o). 

After transformations, Eq. (7), whose right side contains the prin- 
cipal term of the expansion of ~o(~,), can be written in the form: 

2T~ (8) 
go "~ a T  -~- ( d l  / dg)oTg o' =: G (x) 

2 | e'X~ go ~- ~'~ 4- ( d l / d g ) o T g  o' 

c ( . )  - g ~  x t - q ,  Ixi  ' ~ = g 2  [ p  - qgo'T + rgo'>cz] (9) 

, +o +o + = , ,  + ,o , + o ,  + o, = ~ - -  T ,  
o 

'+" ' " b + ,  
l ~ ) ~  = - T  - 

The coefficients p, q, r in formulas (9) depend on the parameters 
of the problem and on friction. 

Let us return to the integration of Eq. (2). Introducing the coordi-  
nate 

q~ = i' l~t dTI 
o 

(~o) 

we obtain Eq.(2) in the following form 

~f'~g d g  
drb-'~a + ~ t  d~l~ = O, q~l ~--- ~P [~ ('qt)]. (~1) 

Integrating, with consideration ot the boundary conditions, we 
obtain the following expression for go : 

o , , + , =  exp(--! +,+,)d,,,. 
o o 

(i~) 
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Table i 

k 4, (k) 4, (k) k 40 (k) 4, (k) 

0 
O.i 
0.2 
0.3 
0.4 
0.5 
0.6 
0.7 
0.8 
0.9 
l 

0.893 
0.9398 
0.9903 
i.0448 

�9 1.1037 
t.1674 
1.2370 
t . 3 t t t  
t.3923 
t.4806 
1.5766 

0.4514 
0.4862 
0.5244 
0.5662 
0.6t21 
0.6625 
0.7179 
0.7788 
0.8460 
0.9200 
1.0017 

t .1  
t .2 
t . 3  
t . 4  
t .5  
1.6 
t . 7  
i . 8  
t .9  
2 
2. t  

t .68t2 
t.7953 
t.9200 
2.0563 
2.2056 
2.3692 
2.5488 
2.7462 
2.9635 
3.2028 
3.4669 

t.092t 
1.t92t 
1.3028 
i.4256 
t .56t9 
t . 7 t 3 4  
i .88i2 
2.0696 
2.2790 
2.5i27 
2.7738 

Table 2 

Friction (r) 

~ = t  r = 0.7 
(0) = 

l = t SjO = 0.2 SjO = 0.02 l = 1 SjO = 0.2 SjO = 0.02 

0 

= - 0 . 3  

- -0 .5  

- - t  .0 

0.9629 
(0.9548) 

0.7770 

0.666t 
(0.6669) 

0.4489 
(0,4519) 

0.91t7 

0.7383 

0.6373 

O. 4409 

0.8802 

0.7084 

0.6133 

0.4333 

0.9528 
(0.9362) 

O.7737 

0.6668 
(0.6610) 

0.4540 
(0.455i) 

0.9083 
(0.9t09) 

0.7388 

0.6395 
(0.6430) 

0.4441 
(0.4458) 

H e a t  F lux  (g~)  

0.8788 
(0.8894) 

0.7114 

0.6168 
(0.6276) 

0.4349 
(0.4380) 

(0) = ~, 
I = l  

O. 554O 
0 (0.542 0 

- -0 .3  O. 3673 

- -0 .5  0.2623 
(0.258O) 

- - t . 0  0.0823 
(0.0823) 

SjO = 0.02 

0.5327 

O. 3470 

0.2453 

0.0769 

$5o = 0.02 

0.5333 

0.3369 

0.2340 

0.0722 

/ = 1  

0.484i 
(0.4696) 

0.3470 

0.2663 
(0.2600) 

0.1i20 
(0.1tt2) 

Sj0 = 0.2 

0.4676 
(0.4484) 

0.3302 

0.25ii  
(0.2430) 

0.i044 
(0.10i0) 

$50 = 0.02 

0.4692 
(0.43t7) 

0.3232 

0.2420 
(0.2295) 

0.0983 
(0.0932) 
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In the neighborhood of r/= 0, we have the expansion 

r = a, h + Kil t  + Z (q0, 
0 

�9 = %,~ (o) : %~, (o), 

co q~, (n+a) (0) 
z (.,) = n,' ~ (/; + 4)~ ,V ' .  

n-=O 
(137 

Expressing tlic coefficients Y0 and YI cxplicilly hi ~c:rms <,f r and 

g;, and substituthlg tiic initial parasnetcrs of lhc variant, w*: ulnain 

the final equation in the foriil 

a,,,' : (Un~)'/'~o ' (k) II } A i- B g , '  - C g o ' q  1 (21 )  

where 

The integrand in the expression w(~o) decreases exponentially, so 
that the first terms of the expansion will make the principal contri- 
bution. Substituting (13) into (12) and expanding exp [--ZUll)] in 
series, after integration, we obtain the expression 

g O ' - - ( ' ~ - )  ll)o-I ( k T [ l ' ~ - ~ "  Tm*,ai4(k)] . 
m~o 

(147 

k = I a I ( 6 ) - ' "  /<:x'\-('+w3 ~, "r,~ = % {~) %-' (kT, 

m+8 %,, (o) 
d m = --  a (m 104) I , m = o , l , = , * .  (15) 

The functions 

o 

(16) 

can be expressed in terms of the functions ~p,,(k) and ~i(k) using the re- 
curence relations 

% (k) = ~/3 [1 + k~, @)1 
07)  

~ §  (k) : % [(p ~- t) ~ (k) + ~p+~ (~)] (p = o, t_ . . . .  ). 

Table 1 gives values of the functions r (k) and ~l(k) for 0 --< k -< 
2.1. For values of k not listed in Table 1, it is convenient to use 

the interpolation formula 

I % ( k +  6) = ~ ~ 6 ~ (187 7T. ~;+~ (k) = % (k) + 
r==O 

6' 
4- ~+~ (~) ~ + ~+~ (~) ~- + �9 �9 �9 

For values of k < 1, the functions ~ ( k )  and ol(k) can be obtained 
from asymptotic expressions of the form 

~, P r ( % ( . + ~ ) )  
~,(k) = t 3  I'[1~\37 - -  n! r(Va) ' 

vl~o 
(19) 

r  (k) = - g  = n! r (l/~) 

For example, for k = 0.6,  three terms of expansion (19) yield a 
value for the function ,~gk) that differs by less than 0.01% from the 
tabulated value. 

These calculations show that the quantity go can be determined 
with sufficient accuracy by considering three terms of the expansion 
in gq. (14): 

go' = (V~7'l'~o -~ (k) I1 "4- "r.~, + Tt%l-q (20) 

<-4. 
taT~-'l'r % L*~(:J_] '/'b*] 

a go } u'r 

c = ~ w /  xt~;x ,o<, '~ : [ " ! d~ )o - tWSo l ' ,  

[ d l  \ 1 (et~ 
t , * = t - e ~  1 -  t~)ojt  ateg/o 

Since the quantity g~0 ~- Cg0 z << 1 + A, Eq. (21) can be readily 

solved by successive approximations. 
Table 2 gives values of r and g'0 obtained by solving the system of 

equations (8), (21) for various combinations of the parameters o, a, S j0. 

The parameter go is equal to 0.,5. Values of r and go' obtained by 
numerical integration are given in parentheses. 

Analysis of the data in Table 2 shows that the approximate equa- 
tions (8), (21) give satisfactory accuracy in calculating the unknowns 

r and go 
It is of interest to note that the error involved in the determination 

of r and g; is roughly constant over the entire range of variation of 
the parameter a.  For a more exact determination of values of g~ at 
small a use can be made of asymptotic expansions anaiogous to those 
derived in [4]. The same reference also gives a comparison with the 
result of a numerical integration for g, = 1. 

In conclusion, we note that since the dependence of the solution 
of the system (8), (21) on the variability of the properties of the gas is 
described by the quantity (all~rig)., (see (227), it is evidently this para- 
meter which should be censidered characteristic in taking into account 

the compressibility, rather than the factor l e = p~,~/to ~ ,, commonly 
used in the literature for approximating the values of r and g;. 

The authors are indebted to T Ya Tlmofeev for his help with the 
numerical calcuIations 
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